Aerobic activity of Escherichia coli alcohol dehydrogenase is determined by a single amino acid.
نویسندگان
چکیده
Expression of the alcohol dehydrogenase gene, adhE, in Escherichia coli is anaerobically regulated at both the transcriptional and the translational levels. To study the AdhE protein, the adhE(+) structural gene was cloned into expression vectors under the control of the lacZ and trp(c) promoters. Wild-type AdhE protein produced under aerobic conditions from these constructs was inactive. Constitutive mutants (adhC) that produced high levels of AdhE under both aerobic and anaerobic conditions were previously isolated. When only the adhE structural gene from one of the adhC mutants was cloned into expression vectors, highly functional AdhE protein was isolated under both aerobic and anaerobic conditions. Sequence analysis revealed that the adhE gene from the adhC mutant contained two mutations resulting in two amino acid substitutions, Ala267Thr and Glu568Lys. Thus, adhC strains contain a promoter mutation and two mutations in the structural gene. The mutant structural gene from adhC strains was designated adhE*. Fragment exchange experiments revealed that the substitution responsible for aerobic expression in the adhE* clones is Glu568Lys. Genetic selection and site-directed mutagenesis experiments showed that virtually any amino acid substitution for Glu568 produced AdhE that was active under both aerobic and anaerobic conditions. These findings suggest that adhE expression is also regulated posttranslationally and that strict regulation of alcohol dehydrogenase activity in E. coli is physiologically significant.
منابع مشابه
Cloning and characterization of the gene encoding pyrroloquinoline quinone-dependent poly(vinyl alcohol) dehydrogenase of Pseudomonas sp. strain VM15C.
A gene library of poly(vinyl alcohol) (PVA)-degrading Pseudomonas sp. strain VM15C was constructed in Escherichia coli with the vector pUC18. Screening of this library with a chromogenic PVA dehydrogenase assay resulted in the isolation of a clone that carries the gene (pdh) for the PVA dehydrogenase, and the entire nucleotide sequence of its structural gene was determined. The gene encodes a p...
متن کاملAwakening sleeping beauty: production of propionic acid in Escherichia coli through the sbm operon requires the activity of a methylmalonyl-CoA epimerase
BACKGROUND Propionic acid is used primarily as a food preservative with smaller applications as a chemical building block for the production of many products including fabrics, cosmetics, drugs, and plastics. Biological production using propionibacteria would be competitive against chemical production through hydrocarboxylation of ethylene if native producers could be engineered to reach near-t...
متن کاملGene cloning and expression of Leifsonia alcohol dehydrogenase (LSADH) involved in asymmetric hydrogen-transfer bioreduction to produce (R)-form chiral alcohols.
The gene encoding Leifsonia alcohol dehydrogenase (LSADH), a useful biocatalyst for producing (R)-chiral alcohols, was cloned from the genomic DNA of Leifsonia sp. S749. The gene contained an opening reading frame consisting of 756 nucleotides corresponding to 251 amino acid residues. The subunit molecular weight was calculated to be 24,999, which was consistent with that determined by polyacry...
متن کاملNucleotide sequence of the glpD gene encoding aerobic sn-glycerol 3-phosphate dehydrogenase of Escherichia coli K-12.
Aerobic sn-glycerol 3-phosphate dehydrogenase, encoded by the glpD gene of Escherichia coli, is a cytoplasmic membrane-associated respiratory enzyme. The nucleotide sequence of glpD was determined. An open reading frame of 501 codons was preceded by a consensus Shine-Dalgarno sequence. The proposed translational start and reading frame of glpD were confirmed by determining the nucleotide sequen...
متن کاملProduction of Recombinant Proline Dehydrogenase Enzyme from Pseudomonas fluorescens pf-5 in E. coli System
Proline dehydrogenase (ProDH; 1.5.99.8) belongs to superfamily of amino acid dehydrogenase, which plays a significant role in the metabolic pathway from proline to glutamate. The goal of this research was gene cloning and characterization of ProDH enzyme from Pseudomonas fluorescens pf-5 strain. The gene encoding ProDH was isolated by means of PCR amplification and cloned in an IPTG inducible T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of bacteriology
دوره 182 21 شماره
صفحات -
تاریخ انتشار 2000